May 6, 2007

Build Your Blog Traffic Using Excel and Data Mining

This past Saturday, I posted about using data mining to look for patterns in your blog traffic. I wrote that you can use something called an Excel Pivot Chart report to get a better feel for how your readers are interacting with your site. What I should’ve written was that you can use an Excel Pivot Table report, the chart is optional. So why should you build an Excel Pivot Table?

Building a report is a great way to see trends in your readership and its easy to do. Once you see things happening on your site you can start asking questions like, what type of content drives the most traffic and on what days?” The Excel Pivot Table report won’t be able to answer that question but it can answer the question, what’s my busiest day, or what’s my optimal post per day quantity, and what’s my most popular category.”

Interested? Here’s how you do it in 5 easy steps.

Step 1 - Gather Data

If you use Google Adwords, or another site statisitc monitor, download your visitor data. You can choose what ever time frame you like, a good rule of thumb is about 2 months worth of data. You’ll need to get the number of hits and the date of the hits. Next, add this information to an Excel spreadsheet and add the following columns: Weekday, Number of Posts, and Category.

Step 2 - Transform the Data

Go back between the dates of your data download and fill in the columns for Weekday, make sure to match the date with the right weekday. Next, fill in the Number of Posts column with, you guessed it, the number of posts you did that day.

Step 3 - Create a Category

When you get to the step of data mining your traffic, you’ll want to know what content drives your traffic and on what days. Adding a key of categories will help you accomplish that. I entered the number 1” if the post that day was about Forex, 2″ if it was for stocks, etc. You get the point. If you posted more than one post on any given day and it was about more than one topic, you can add a second or third category column. You get as detailed as you want, its really up to you.

Step 4 - Build the Excel Pivot Table

Once you have all your information, you can build the table. Go to Data > Pivot Table and follow the instructions. You can place the table in your existing worksheet or a new one (I usually go for a new worksheet). Select your data range to include the Weekday, # of Visitors, Posts Per Day, and Category.

Once you did that you’ll see your new worksheet with a little floating menu system. You can drag and drop the fields into your new table. Drag the # of Visitors into the Drop Data Items area, drag the Weekday field into the Drop Column Fields area, drag Posts per Day to the Drop Row Fields area, and lastly drag the Category field to the Drop Page Fields area.

Step 5 - Format the Table

Use Excel’s auto format function in the Pivot Table wizard to select the style of table you’d like to see. When your all done, your spreadsheet should look something like this Blog Data example.

The first step before Data Mining your blog traffic is done! You can easily see what your busiest day of the week is, what’s a good # of posts per day (this is great from an efficiency standpoint), and what’s your most popular category. Just doing this simple Excel exercise can help you identify the ways to build more traffic to your website, which could yield financial benefits if you’re using Adsense or some other monetizing method.

As always, if you have a question please leave me a comment.

Don't forget to sign up for our monthly newsletter on Data Science and RapidMiner here!

Excel Tutorial blogging Traffic

Previous post
Building an AI financial market model - Lesson III In Lesson 2, I went over the concept of MultiObjective Feature Selection (MOFS). In this lesson we’ll build on MOFS for our model but we’ll forecast
Next post
Building an AI financial market model - Lesson IV <script async src="//"></script> <!-- Top of Post --> <ins class="adsbygoogle" style="display:block" data-ad-client="ca-pub-9186816366360358" data-ad-slot="1374133468" data-ad-format="link"></ins> <script> (adsbygoogle = window.adsbygoogle || []).push({}); </script> <br></br> In Lesson 3, I introduced the Sliding Window Validation operator to test how well we can forecast a trend in a time series.  Our