Matrix Factorization for Missing Value Imputation

I stumbled across an interested reddit post about using matrix factorization (MF) for imputing missing values.

The original poster was trying to solve a complex time series that had missing values. The solution was to use matrix factorization to impute those missing values.

Since I never heard of that application before, I got curious and searched the web for information. I came across this post using matrix factorization and Python to impute missing values.

In a nutshell:

Recommendations can be generated by a wide range of algorithms. While user-based or item-based collaborative filtering methods are simple and intuitive, matrix factorization techniques are usually more effective because they allow us to discover the latent features underlying the interactions between users and items. Of course, matrix factorization is simply a mathematical tool for playing around with matrices, and is therefore applicable in many scenarios where one would like to find out something hidden under the data.

The author uses a movie rating example, where you have users and different ratings for movies. Of course, a table like this will have many missing ratings. When you look at the table, it looks just like a matrix that’s waiting to be solved!

In a recommendation system such as Netflix or MovieLens, there is a group of users and a set of items (movies for the above two systems). Given that each users have rated some items in the system, we would like to predict how the users would rate the items that they have not yet rated, such that we can make recommendations to the users. In this case, all the information we have about the existing ratings can be represented in a matrix. Assume now we have 5 users and 10 items, and ratings are integers ranging from 1 to 5, the matrix may look something like this (a hyphen means that the user has not yet rated the movie):

Matrix Factorization of Movie RatingsMatrix Factorization of Movie Ratings

After applying MF, you get these imputed results:

Matrix Factorization of Movie Ratings ResultsMatrix Factorization of Movie Ratings Results

Of course I skipped over the discussion of Regularization and the Python Code, but you can read about that here.

Going back to the original Reddit post, I was intriqued how this imputation method is available in H2O.ai’s open source offering. It’s called Generalized Low Ranked Models and not only helps with dimensionality reduction BUT it also imputes missing values. I must check out more because I know there’s a better way than just replacing the average value.

Up next Guess What? I Joined H20ai! I’m super excited to be joining the ranks of H2O.ai! I’ve accepted an offer to join their Sales team as a Senior Customer Solutions Engineer, and I Clients and Friends One of my first clients at RapidMiner was Marco. He bought RapidMiner Server from us to build dashboards and do a lot of ETL for his company in
Latest posts The Ye Old Blog List Motorola: Then and Now EWM Redux Testing for mean reversion with Python & developing simple VIX system - Talaikis unsorted - Tadas Talaikis Blog Steps to calculate centroids in cluster using K-means clustering algorithm - Data Science Central Basics of Statistical Mean Reversion Testing - QuantStart Algorithmic trading in less than 100 lines of Python code - O’Reilly Media Interpreting Machine Learning Models Microsoft the AI Powerhouse Investing in the S&P500 still beats AI Trading Microsoft makes a push to simplify machine learning | TechCrunch 10 Great Articles On Python Development — Hacker Noon Introduction to Keras Democratising Machine learning with H2O — Towards Data Science Getting started with Python datatable | Kaggle Phone Addiction Version 12 Launches Today! Machine Learning Making Pesto Tastier 5 Dangerous Things You Should Let Your Kids Do The Pyschology of Writing Investing in 2019 and beyond TensorFlow and High Level APIs Driving Marketing Performance with H2O Driverless AI Machine Learning and Data Munging in H2O Driverless AI with datatable Making AI Happen Without Getting Fired Latest Musings from a Traveling Sales Engineer The Night before H2O World 2019 Why Forex Trading is Frustrating Functional Programming in Python Automatic Feature Engineering with Driverless AI Ray Dalio's Pure Alpha Fund