|||

TensorFlow and High Level APIs

TensorFlowTensorFlow

I got a chance to watch this great presentation on the upcoming release of TensorFlow v2 by Martin Wicke. He goes over the big changes - and there’s a lot - plus how you can upgrade your earlier versions of TensorFlow to the new one. Let’s hope the new version is faster than before! My video notes are below:

TensorFlow

  • Since it’s release, TensorFlow (TF) has grown into a vibrant community
  • Learned a lot on how people used TF
  • Realized using TF can be painful
  • You can do everything in TF but what is the best way
  • TF 2.0 alpha is just been released
  • Do pip install -U –pre tensorflow’
  • Adopted tf.keras as high-level API (SWEET!)
  • Includes eager execution by default
  • TF 2 is a major release that removes duplicate functionality, makes the APIs consistent, and makes it compatible in different TF versions
  • New flexibilities: full low-level API, internal operations are accessible now (tf.raw_ops), and inheritable interfaces for variables, checkpoints, and layers
  • How do I upgrade to TensorFlow 2
  • Google is starting the process of converting the largest codebase ever
  • Will provide migration guides and best practices
  • Two scripts will be shipped: backward compatibility and a conversion script
  • The reorganization of API causes a lot of function name changes

TensorFlow v2

TensorFlow v2TensorFlow v2

  • Release candidate in Spring 2019’ < might be a bit flexible in the timeline
  • All on GitHub and project tracker
  • Needs user testing, please go download it
  • Karmel Allison is an Engineering manager for TF and will show off high-level APIs
  • TF adopted Keras
  • Implemented Keras and optimized in TF as tf.keras
  • Keras built from the ground up to be pythonic and simple
  • Tf.keras was built for small models, whereas in Google they need HUGE model building
  • Focused on production-ready estimators
  • How do you bridge the gap from simple vs scalable API
  • Debug with Eager, easy to review Numpy array
  • TF also consolidated many APIs into Keras
  • There’s one set of Optimizers now, fully scalable
  • One set of Metrics and Losses now
  • One set of Layers
  • Took care of RNN layers in TF, there is one version of GRE and LSTM layers and selects the right CPU/GPU at runtime
  • Easier configurable data parsing now (WOW, I have to check this out)
  • TensorBoard is now integrated into Keras
  • TF distribute strategy for distributing work with Keras
  • Can add or change distribution strategy with a few lines of code
  • TF Models can be exported to SavedModel using the Keras function (and reloaded too)
  • Coming soon: multi-node sync
  • Coming soon: TPU’s

There’s a lot in this 22 minute video about TensorFlow v2. Must watch.

Up next Driving Marketing Performance with H2O Driverless AI Investing in 2019 and beyond
Latest posts Real Estate Flippers are Flipping Out Mexican Market Manipulation Monday Chipotle, the Bowl That Got Away! ETH Cryptocurrency BTC Cryptocurrency XRP Cryptocurrency Vanguard's Total Index ETF - VTI Interpretable Machine Learning with RSparkling Revisiting the Agriculture Index from 2007 - ($GKX) Revisiting FXI from 2007 Passive Income Revisiting GOOG, GE, NE, IYR from 2007 The Ye Old Blog List Motorola: Then and Now EWM Redux Interpreting Machine Learning Models Microsoft the AI Powerhouse Investing in the S&P500 still beats AI Trading Introduction to Keras Phone Addiction Machine Learning Making Pesto Tastier 5 Dangerous Things You Should Let Your Kids Do The Pyschology of Writing Investing in 2019 and beyond TensorFlow and High Level APIs Driving Marketing Performance with H2O Driverless AI Machine Learning and Data Munging in H2O Driverless AI with datatable Making AI Happen Without Getting Fired Latest Musings from a Traveling Sales Engineer The Night before H2O World 2019 Why Forex Trading is Frustrating