Neural Market Trends |||

Word2Vec Example Process in RapidMiner

This is an example process of how to use Word2Vec in RapidMiner with the Search Twitter operator. For more information check out this post on the community.

I’ll be going over this in a bit more detail at my next live stream here.

Word2VecRapidMinerWord2VecRapidMiner

        <?xml version="1.0" encoding="UTF-8"?><process version="8.1.001">
          <context>
            <input/>
            <output/>
            <macros/>
          </context>
          <operator activated="true" class="process" compatibility="8.1.001" expanded="true" name="Process">
            <process expanded="true">
              <operator activated="true" class="social_media:search_twitter" compatibility="8.1.000" expanded="true" height="68" name="Search Twitter" width="90" x="45" y="34">
                <parameter key="connection" value="Twitter - Studio Connection"/>
                <parameter key="query" value="rapidminer"/>
                <parameter key="locale" value="en"/>
              </operator>
              <operator activated="true" class="select_attributes" compatibility="8.1.001" expanded="true" height="82" name="Select Attributes" width="90" x="45" y="136">
                <parameter key="attribute_filter_type" value="single"/>
                <parameter key="attribute" value="Text"/>
                <parameter key="include_special_attributes" value="true"/>
              </operator>
              <operator activated="true" class="nominal_to_text" compatibility="8.1.001" expanded="true" height="82" name="Nominal to Text" width="90" x="45" y="238"/>
              <operator activated="true" class="text:data_to_documents" compatibility="8.1.000" expanded="true" height="68" name="Data to Documents" width="90" x="246" y="34">
                <list key="specify_weights"/>
              </operator>
              <operator activated="true" class="loop_collection" compatibility="8.1.001" expanded="true" height="82" name="Loop Collection" width="90" x="246" y="136">
                <process expanded="true">
                  <operator activated="true" class="text:transform_cases" compatibility="8.1.000" expanded="true" height="68" name="Transform Cases" width="90" x="112" y="34"/>
                  <operator activated="true" class="text:tokenize" compatibility="8.1.000" expanded="true" height="68" name="Tokenize" width="90" x="581" y="34"/>
                  <connect from_port="single" to_op="Transform Cases" to_port="document"/>
                  <connect from_op="Transform Cases" from_port="document" to_op="Tokenize" to_port="document"/>
                  <connect from_op="Tokenize" from_port="document" to_port="output 1"/>
                  <portSpacing port="source_single" spacing="0"/>
                  <portSpacing port="sink_output 1" spacing="0"/>
                  <portSpacing port="sink_output 2" spacing="0"/>
                </process>
              </operator>
              <operator activated="true" class="word2vec:Word2Vec_Learner" compatibility="1.0.000" expanded="true" height="68" name="Word2Vec " width="90" x="447" y="34"/>
              <operator activated="true" class="word2vec:Get_Vocabulary" compatibility="1.0.000" expanded="true" height="82" name="Extract Vocabulary" width="90" x="581" y="34">
                <parameter key="Get Full Vocabulary" value="true"/>
                <parameter key="Take Random Words" value="false"/>
                <parameter key="Number of Words to Pull" value="10"/>
              </operator>
              <connect from_op="Search Twitter" from_port="output" to_op="Select Attributes" to_port="example set input"/>
              <connect from_op="Select Attributes" from_port="example set output" to_op="Nominal to Text" to_port="example set input"/>
              <connect from_op="Nominal to Text" from_port="example set output" to_op="Data to Documents" to_port="example set"/>
              <connect from_op="Data to Documents" from_port="documents" to_op="Loop Collection" to_port="collection"/>
              <connect from_op="Loop Collection" from_port="output 1" to_op="Word2Vec " to_port="doc"/>
              <connect from_op="Word2Vec " from_port="mod" to_op="Extract Vocabulary" to_port="mod"/>
              <connect from_op="Extract Vocabulary" from_port="exa" to_port="result 1"/>
              <portSpacing port="source_input 1" spacing="0"/>
              <portSpacing port="sink_result 1" spacing="0"/>
              <portSpacing port="sink_result 2" spacing="0"/>
            </process>
          </operator>
        </process>
Up next Learn RapidMiner Livestream Volume 1 I had my first YouTube LiveStream on how to use RapidMiner. It’s about 48 minutes long and I do a GUI overview and do some text mining. I even WTF is a Tensor?
Latest posts Phone Addiction Version 12 Launches Today! Machine Learning Making Pesto Tastier 5 Dangerous Things You Should Let Your Kids Do The Pyschology of Writing TensorFlow and High Level APIs Driving Marketing Performance with H2O Driverless AI Machine Learning and Data Munging in H2O Driverless AI with datatable Making AI Happen Without Getting Fired Latest Musings from a Traveling Sales Engineer The Night before H2O World 2019 Why Forex Trading is Frustrating Functional Programming in Python Automatic Feature Engineering with Driverless AI Ray Dalio's Pure Alpha Fund What's new in Driverless AI? Latest Writings Elsewhere - December 2018 House Buying Guide for Millennials Changing Pinboard Tags with Python Automate Feed Extraction and Posting it to Twitter Flux: A Machine Learning Framework for Julia Getting Started in Data Science Part 2 Makers vs Takers How Passive Investing Saved My Life Startups and Open Source The Process of Writing H2O AI World 2018 in London Ray Dalio's Pure Alpha Fund Isolation Forests in H2O.ai Living the Dream? Humility and Equanimity in Sales